Image fusion algorithm based on improved K-singular value decomposition and Hadamard measurement matrix

Author:

Yang Qiang1,Wang Huajun2

Affiliation:

1. College of Computer and Information Engineering, Yibin University, Yibin, China

2. College of Applied Geophysics, Chengdu University of Technology, Chengdu, China

Abstract

To solve the problem of high time and space complexity of traditional image fusion algorithms, this paper elaborates the framework of image fusion algorithm based on compressive sensing theory. A new image fusion algorithm based on improved K-singular value decomposition and Hadamard measurement matrix is proposed. This proposed algorithm only acts on a small amount of measurement data after compressive sensing sampling, which greatly reduces the number of pixels involved in the fusion and improves the time and space complexity of fusion. In the fusion experiments of full-color image with multispectral image, infrared image with visible light image, as well as multispectral image with full-color image, this proposed algorithm achieved good experimental results in the evaluation parameters of information entropy, standard deviation, average gradient, and mutual information.

Funder

Yibin University through the scientific research funding

Department of Education in Sichuan Provincial

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3