A Steiner point candidate-based heuristic framework for the Steiner tree problem in graphs

Author:

Zhang Hao12,Ye Dong-Yi12,Guo Wen-Zhong2

Affiliation:

1. Center for Discrete Mathematics and Theoretical Computer Science, Fuzhou University, FuZhou, PR China

2. College of Mathematics and Computer Science, Fuzhou University, FuZhou, PR China

Abstract

The underlying models of many practical problems in various engineering fields are equivalent to the Steiner tree problem in graphs, which is a typical NP-hard combinatorial optimization problem. Thus, developing a fast and effective heuristic for the Steiner tree problem in graphs is of universal significance. By analyzing the advantages and disadvantages of the fast classic heuristics, we find that the shortest paths and Steiner points play important roles in solving the Steiner tree problem in graphs. Based on the analyses, we propose a Steiner point candidate-based heuristic algorithm framework (SPCF) for solving the Steiner tree problem in graphs. SPCF consists of four stages: marking [Formula: see text] points, constructing the Steiner tree, eliminating the detour paths, and [Formula: see text]-based refining stage. For each procedure of SPCF, we present several alternative strategies to make the trade-off between the effectiveness and efficiency of the algorithm. By finding the shortest path clusters between vertex sets, several methods are proposed to mark the first type of Steiner point candidates [Formula: see text]. The solution qualities of the classic heuristics are effectively improved by looking [Formula: see text] points as terminals. By constructing a Voronoi diagram, a series of methods are suggested to mark the second type of Steiner point candidates [Formula: see text]. The feasible solution quality is efficiently improved by employing the [Formula: see text] points as the insertable key-vertices in key-vertex insertion local search method. Numerical experiments show that the proposed strategies are all effective for improving the solution quality. Compared with other effective algorithms, the proposed algorithms can achieve better solution quality and speed performance.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3