Mean Square Error Estimation of Small Area Predictors by Use of Parametric and Nonparametric Bootstrap

Author:

Pfeffermann Danny12,Glickman Hagit3,Preminger Arie4

Affiliation:

1. Department of Statistics and Data Sciences, Hebrew University of Jerusalem, Israel

2. Statistical Sciences Research Institute, University of Southampton, UK

3. Samuel Neaman Institute for National Policy Research, Haifa, Israel

4. Aacademic College, Ramat Gan, Israel

Abstract

In this article, we propose and compare some old and new parametric and nonparametric bootstrap methods for MSE estimation in small area estimation, restricting to the case of the widely used Fay-Herriot model. The parametric method consists of generating parametrically a large number of area bootstrap samples from the model fitted to the original data, re-estimating the model parameters for each bootstrap sample and then estimating the separate components of the MSE. The use of double-bootstrap is also considered. The nonparametric method generates the samples by bootstrapping standardized residuals, estimated from the original sample data. The bootstrap procedures are compared to other methods proposed in the literature in a simulation study, which also examines the robustness of the various methods to non-normality of the model error terms. A design-based MSE estimator for the Fay-Herriot model-dependent predictor is also described and its performance is investigated in a separate simulation study. AMS subject classification: 62F10, 62F40

Publisher

SAGE Publications

Reference20 articles.

1. On measures of uncertainty of empirical Bayes small-area estimators

2. Chen S, Lahiri P. A weighted Jackknife MSPE in small area estimation. Proc Surv Res Meth Sec ASA 2002; 433–477. Url http://www.asasrms.org/Proceedings/y2002/Files/JSM2002-001127.pdf

3. On measuring the variability of small area estimators under a basic area level model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3