Robust Empirical Best Small Area Finite Population Mean Estimation Using a Mixture Model

Author:

Gershunskaya Julie1,Lahiri Partha2

Affiliation:

1. U.S. Bureau of Labor Statistics, Washington DC, USA.

2. University of Maryland, College Park, College Park, MD, USA.

Abstract

We propose a new robust empirical best estimation approach to estimate small area finite population means that are relatively insensitive to a model misspecification or to the presence of outliers. This important robustness property is achieved by replacing the standard normality assumption of the sampling errors in a nested-error regression (NER) model by a scale mixture of two normal distributions with different variances. We present a formal statistical test to identify if a small area is an outlier and provide an efficient new computing algorithm to implement our procedure. We examine the finite sample robustness properties of our proposed method using a Monte Carlo simulation and compare the proposed method with alternative existing methods in a study using data from the Current Employment Statistics (CES) survey conducted by the US Bureau of Labor Statistics (BLS).

Publisher

SAGE Publications

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Bayesian Approach to Linking a Survey and a Census via Small Areas;Stats;2021-06-09

2. Use of Administrative Records in Small Area Estimation;Administrative Records for Survey Methodology;2021-03-26

3. Linear Empirical Bayes Prediction of Employment Growth Rates Using the U.S. Current Employment Statistics Survey;Strategic Management, Decision Theory, and Decision Science;2021

4. Robust Small Area Estimation: An Overview;Annual Review of Statistics and Its Application;2020-03-09

5. Statistical Analysis with Linked Data;International Statistical Review;2018-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3