Extrapolation of Mackey-Glass data using Cascade Correlation

Author:

Ensley David1,Nelson Dale E.2

Affiliation:

1. 200 Broun Hall Department of Electrical Engineering Auburn University Auburn, Alabama 36849

2. WL/AAAT-1 Wright Laboratory Wright-Patterson AFB OH 45433-6543

Abstract

Attempting to find near-optimal architec tures, ontogenic neural networks develop their own architectures as they train. As part of a project entitled "Ontogenic Neural Networks for the Prediction of Chaotic Time Series," this paper presents findings of a ten- week research period on using the Cascade Correlation ontogenic neural network to extrapolate (predict) a chaotic time series generated from the Mackey-Glass equation. During training the neural network forms a model of the Mackey-Glass equation by observing its behavior. Then the neural network is used to simulate the function in order to extrapolate it, that is, to predict its behavior beyond the space observed by the neural network. Truer, more informative measures of extrapolation accuracy than currently popular measures are presented. The effects of some network parameters on extrapolation accuracy were investigated. Sinusoidal activation functions turned out to be best for our data set. The best range for sigmoidal activation functions was [-1, +1]. Though surprisingly good extrapolations have been obtained, there remain pitfalls. These pitfalls are discussed along with possible methods for avoiding them.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Reference8 articles.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3