Reinforcement-learning-based optimal trading in a simulated futures market with heterogeneous agents

Author:

Aydin Nadi Serhan1ORCID

Affiliation:

1. Department of Industrial Engineering, Istinye University, Turkey

Abstract

This paper simulates a futures market with multiple agents and sequential auctions, where agents receive long-lived heterogeneous signals on the true value of an asset and with a known deadline. The evolution of the amount of differential information and its impact on the distribution of overall gains and the pace of truth discovery is examined for various depth levels of the limit order book (LOB). The paper also formulates a dynamic programming model for the problem and presents an associated reinforcement learning (RL) algorithm for finding optimal strategy in exploiting informational disparity. This is done from the perspective of an agent whose information is superior to the collective information of the rest of the market. Finally, a numerical analysis is presented based on a futures market example to validate the proposed methodology for finding the optimal strategy. We find evidence in favor of a waiting strategy where agent does not reveal her signal until the last auction before the deadline. This result may help bring more insight into the micro-structural dynamics that work against market efficiency.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3