Discrete event modeling and massively parallel execution of epidemic outbreak phenomena

Author:

Perumalla Kalyan S1,Seal Sudip K1

Affiliation:

1. Oak Ridge National Laboratory, Oak Ridge, TN, USA

Abstract

In complex phenomena such as epidemiological outbreaks, the intensity of inherent feedback effects and the significant role of transients in the dynamics make simulation the only effective method for proactive, reactive or post facto analysis. The spatial scale, runtime speed, and behavioral detail needed in detailed simulations of epidemic outbreaks cannot be supported by sequential or small-scale parallel execution, making it necessary to use large-scale parallel processing. Here, an optimistic parallel execution of a new discrete event formulation of a reaction–diffusion simulation model of epidemic propagation is presented to facilitate a dramatic increase in the fidelity and speed by which epidemiological simulations can be performed. Rollback support needed during optimistic parallel execution is achieved by combining reverse computation with a small amount of incremental state saving. Parallel speedup of over 5,500 and other runtime performance metrics of the system are observed with weak-scaling execution on a small (8,192-core) Blue Gene/P system, while scalability with a weak-scaling speedup of over 10,000 is demonstrated on 65,536 cores of a large Cray XT5 system. Scenarios representing large population sizes, with mobility and detailed state evolution modeled at the level of each individual, exceeding several hundreds of millions of individuals in the largest cases, are successfully exercised to verify model scalability.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Devastator: A Scalable Parallel Discrete Event Simulation Framework for Modern C++;Proceedings of the 38th ACM SIGSIM Conference on Principles of Advanced Discrete Simulation;2024-06-24

2. Evaluating Parallelization Strategies for Large-Scale Individual-based Infectious Disease Simulations;2023 Winter Simulation Conference (WSC);2023-12-10

3. Rebooting simulation;IISE Transactions;2023-11-08

4. Scalable parallel and distributed simulation of an epidemic on a graph;PLOS ONE;2023-09-29

5. Scalable parallel and distributed simulation of an epidemic on a graph;2023-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3