On fidelity and model selection for discrete event simulation

Author:

Kim Hansoo1,McGinnis Leon F2,Zhou Chen2

Affiliation:

1. Department of Management Information Systems, Yanbian University of Science and Technology, P. R. China.

2. Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, USA.

Abstract

In simulation, perhaps the most common use of the term ‘fidelity’ refers to the faithfulness with which model behavior reflects modeled system behavior. While there have been studies of fidelity seeking absolute and quantitative measures, there is not yet a consensus on a workable fidelity metric. We propose a formal modeling framework for comparing discrete event system simulation models in terms of fidelity, using a relative fidelity indicator. Based on the framework, we consider the possibility that the higher fidelity simulation models can also be more productive, even though they are more expensive to develop and use, since they can be used to achieve multiple objectives. First, we propose a formal simulation modeling framework within which the fidelity of simulation models can be discussed. With this framework and a simple example, we then define a relative fidelity indicator that provides a systematic way of comparing the fidelity of two simulation models. The relative fidelity indicator focuses on the most important characteristics in simulation studies: the input and output interfaces and the variables used for specifying a real-world system and simulation models. It does not require any special modeling formalism for model comparison. Based on the relative fidelity indicator and simulation modeling framework, we state the optimum simulation model selection problem to achieve given simulation objectives. Under a practical assumption, we analyze the simulation model selection problem and derive properties related to simulation modeling and the fidelity of simulation models.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3