Comparison of Load Balancing Strategies on Cluster-based Web Servers

Author:

Yong Meng Teo 1,Ayani Rassul2

Affiliation:

1. Department of Computer Science National University of Singapore 3 Science Drive 2 Singapore 117543

2. Department of Microelectronics and Information Technology Royal Institute of Technology (KTH) 164 40 Kista, Stockholm Sweden

Abstract

This paper focuses on an experimental analysis of the perfor mance and scalability of cluster-based web servers. We carry out the comparative studies using two experimental platforms, namely, a hardware testbed consisting of sixteen PCs, and a trace-driven discrete-event simulator. Dispatcher and web server service times used in the simulator are determined by carrying out a set of experiments on the testbed. The simulator is validated against stochastic queuing models and the testbed. Experiments on the testbed are limited by the hardware configu ration, but our complementary approach allows us to carry out scalability studies on the validated simulator. The three dis patcher-based scheduling algorithms analyzed are: round robin scheduling, least connected based scheduling, and least loaded based scheduling. The least loaded algorithm is used as the baseline (upper performance bound) in our analysis and the performance metrics include average waiting time, average re sponse time, and average web server utilization. A synthetic trace generated by the workload generator called SURGE, and a public-domain France Football World Cup 1998 trace are used. We observe that the round robin algorithm performs much worse in comparison with the other two algorithms for low to medium workload. However, as the request arrival rate increases, the performance of the three algorithms converge with the least con nected algorithm approaching the baseline algorithm at a much faster rate than the round robin. The least connected algorithm performs well for medium to high workload. At very low load, the average waiting time is two to six times higher than the baseline algorithm but the absolute value between these two waiting times is very small.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3