A discrete-event simulation tool for airport deicing activities: Dallas-Fort Worth International Airport

Author:

Jen Hui-Chiao1,Huff Brian L2,LeBoulluec Aera K2,Nasirian Bahareh2ORCID,Bum Kim Seoung3,Rosenberger Jay M2,Chen Victoria CP2

Affiliation:

1. CSX Transportation, Inc., Jacksonville, FL, USA

2. Department of Industrial, Manufacturing, and Systems Engineering, University of Texas at Arlington, Arlington, TX, USA

3. Department of Industrial Management Engineering, Korea University, Seoul, South Korea

Abstract

Aircraft deicing/anti-icing fluids (ADFs) are applied to remove and prevent icing on aircraft during taxi and takeoff. The Dallas-Fort Worth (DFW) International Airport uses deicing pads for deicing activities that collect and contain the spent deicing fluids for proper treatment or disposal. Local waterways receive ADF as “drip and shear” during the aircraft taxi on the runway and then takeoff. The glycol-based ADF serves as a nutrient for bacteria that grow exponentially, deplete dissolved oxygen (DO) from receiving waterways, and subsequently kill aquatic life. In this paper, we present a data-driven discrete-event simulation modeling process developed in collaboration with DFW Airport to assess aircraft assignment strategies to deicing pad locations by monitoring impact on DO. Our process consists of the following phases: (1) Data Collection, (2) Probability Distribution Modeling, and (3) State Transition Modeling. Both Phases (2) and (3) utilized data mining approaches, including treed regression and variable selection via false discovery rate. Detailed implementation of these phases is described for the DFW Airport case study, and the DFW Airport deicing activities simulation tool framework is presented. The actual data and simulation results were compared in terms of the DO levels in airport receiving waterways to verify the model validity after implementing the proposed model for DFW. Thus, the proposed model can be implemented by airports to control and minimize the adverse environmental effects resulting from deicing activities by optimizing the aircraft assignment to the pad locations.

Funder

DFW Airport and National Science Foundation

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3