Numerical simulation of size effects of gas explosions in spherical vessels

Author:

Yan Chen1,Wang Zhirong12,Liu Kai1,Zuo Qingqing1,Zhen Yaya1,Zhang Shangfeng1

Affiliation:

1. Jiangsu Key Laboratory of Hazardous Chemicals Safety and Control, College of Safety Science and Engineering, Nanjing Tech University, China

2. State Key Laboratory of Explosion Science and Technology China, Beijing Institute of Technology, China

Abstract

To study the law of sizes on gas explosions, numerical simulations of methane–air mixture explosions in spherical vessels were performed. The law of sizes on gas explosions is studied using FLUENT simulations with the [Formula: see text] two-equation turbulent model, the eddy-dissipation-concept model, thermal dissipation at a wall boundary, the P1 model, and the SIMPLE algorithm. The experimental results suggest that under an adiabatic condition without energy loss, the maximum explosion pressures in different spherical vessels are all 0.82 MPa, and the effect on the explosion intensity in spherical vessels is small. Under the condition of heat dissipation at the wall boundary, the maximum explosion pressure increases with volume of the spherical vessel. However, the explosion intensity in this condition is lower than that in adiabatic condition. Also, the size effect is not obvious. The size effect on the explosion intensity is significant under the combined effects of heat dissipation at the wall boundary and thermal radiation, where the maximum explosion pressure increases with volume of spherical vessels. On the contrary, the maximum pressure rising rate decreases with the volume of the spherical vessels; this rule coincides with the “cube” law. The studies on the size effects of methane–air mixture explosions in a spherical vessel provide an important reference for establishing a model system that can be used to test and design industrial vessels.

Funder

Jiangsu Project Plan for Outstanding Talents in Six Research Fields

the National Key Research and Development Plan

Opening project of State Key Laboratory of Explosion Science and Technology

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3