Framework for metamodel-based design optimization considering product performance and assembly process complexity

Author:

Eremeev Pavel12ORCID,Cock Alexander De3,Devriendt Hendrik12,Naets Frank12

Affiliation:

1. Department of Mechanical Engineering, KU Leuven, Belgium

2. Flanders Make@KU Leuven, Belgium

3. Flanders Make, Belgium

Abstract

This paper proposes a method for simultaneous evaluation of the assembly process complexity together with the performance of the future product. It allows for product design optimization, considering different aspects of the future design at the early stage of the development process. The proposed method, embodied in a fully automated framework, substitutes the traditional sequential development process with a more efficient and rapid combined procedure, which addresses multiple design aspects simultaneously. Design for assembly (DFA) rules, used as quantitative metrics of the ease-of-assembly of the whole product and individual assembly operations, are automatically evaluated together with performance metrics, estimated based on finite element (FE) simulations. The direct solution to this optimization problem might be inefficient or impossible since it requires the recurrent evaluation of computationally expensive discrete and continuous functions with unknown behavior that represent the optimization objectives and constraints. For that reason, the proposed framework employs regression models based on the Gaussian process and artificial neural networks, thus achieving the optimal design of a product as a result of metamodel-based design optimization (MBDO). The suggested approach is demonstrated in the optimization of a gearbox assembly, considering its mechanical performance and assembly process. Comparing the results of the metamodel-based and direct design optimization shows that MBDO allows finding a better solution using a three times smaller computational budget. In addition, analysis of the results obtained using stationary sampling data sets of different sizes highlighted the limitations of the employed sampling procedure.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3