SWAMP: An agent-based model for wetland and waterfowl conservation management

Author:

Miller Matt L12,Ringelman Kevin M13,Schank Jeffrey C2,Eadie John M1

Affiliation:

1. Department of Wildlife, Fish, and Conservation Biology, University of California, USA

2. Psychology Department, University of California, USA

3. Department of Entomology & Wildlife Ecology, University of Delaware, USA

Abstract

The management of North American waterfowl is widely recognized as a premier example of a successful conservation program. Conservation managers on the wintering grounds typically use simple estimates of food availability and population-wide cumulative energy demand to determine how many birds can be supported on a given landscape. When attempting to plan for future needs due to land reallocation, climate change, and other large-scale environmental changes, simple bioenergetic models may not capture important impacts on individual behavior, such as changes in metabolic costs due to increased travel-time and reduced food accessibility leading to non-linear declines in forager success. We describe the development of an agent-based model of foraging waterfowl that uses explicit individual behavior to generate more detailed and potentially more accurate insights into the impact of environmental changes on forager success and survival. While there is growing recognition of the potential utility of agent-based models in conservation planning, there has yet to be an attempt to formulate, validate, and communicate such a model for use as a decision support tool to guide habitat management conservation for wetlands in North America. Our model seeks to provide the foundational framework for such an effort. We predict that this model will be a useful tool for stakeholders making conservation management decisions.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Reference54 articles.

1. Thorn A. Considerations in spatially explicit, individual based modeling of waterfowl foraging behaviors [thesis]. University of California, Davis, 2003.

2. Individual-based Modeling and Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3