Abstraction of agent interaction processes: Towards large-scale multi-agent models

Author:

Sarraf Shirazi Abbas1,von Mammen Sebastian1,Jacob Christian12

Affiliation:

1. Department of Computer Science, Faculty of Science, University of Calgary, Canada

2. Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Canada

Abstract

The typically large numbers of interactions in agent-based simulations come at considerable computational costs. In this article, we present an approach to reduce the number of interactions based on behavioural patterns that recur during runtime. We employ machine learning techniques to abstract the behaviour of groups of agents to cut down computational complexity while preserving the inherent flexibility of agent-based models. The learned abstractions, which subsume the underlying model agents’ interactions, are constantly tested for their validity: after all, the dynamics of a system may change over time to such an extent that previously learned patterns would not reoccur. An invalid abstraction is, therefore, removed again from the system. The creation and removal of abstractions continues throughout the course of a simulation in order to ensure an adequate adaptation to the system dynamics. Experimental results on biological agent-based simulations show that our proposed approach can successfully reduce the computational complexity during the simulation while maintaining the freedom of arbitrary interactions.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3