Quantifying means-end reasoning skills in simulation-based training: a logic-based approach

Author:

Stolpe Audun1ORCID,Hannay Jo Erskine12ORCID

Affiliation:

1. Department of Applied Research in Information Technology, Norwegian Computing Center, Norway

2. Center for Effective Digitalization of the Public Sector, Simula Metropolitan Center for Digital Engineering, Norway

Abstract

We develop a logic-based approach for designing simulation-based training scenarios. Our methodology embodies a concise definition of the scenario concept and integrates the notions of training goals, acceptable versus unacceptable actions and performance scoring. The approach applies classical artificial intelligence (AI) planning to extract coherent plays from a causal description of the training domain. The domain- and task-specific parts are defined in a high-level action description language [Formula: see text]. Generic causal and temporal logic is added when the causal theory is compiled into the underlying Answer Set Programming (ASP) language. The ASP representation is used to derive a scoring function that reflects the quality of a play or training session, based on a distinction of states and actions into green (acceptable) and red (unacceptable) ones. To that end, we add to the casual theory a set of norms that specify an initial assignment of colors. The ASP engine uses these norms as axioms and propagates colors by consulting the causal theory. We prove that any set of such norms constitutes a conservative extension of the underlying causal theory. With this work, we hope to lay the foundation for the development of design and analysis tools for exercise managers. We envision a software system that lets an exercise manager view all plays of a tentative scenario design, with expediency information and scores for each possible play. Our approach is applicable to any domain in which means-ends reasoning is pertinent. We illustrate the approach in the domain of crisis response and management.

Funder

Research Counsil of Norway

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3