A framework for modeling, generating, simulating, and predicting carbon dioxide dispersion indoors using cell-DEVS and deep learning

Author:

Khalil Hoda1ORCID,Wainer Gabriel1ORCID

Affiliation:

1. Department of Systems and Computer Engineering, Carleton University, Canada

Abstract

Carbon dioxide concentration in enclosed spaces is an air quality indicator that affects occupants’ well-being. To maintain healthy carbon dioxide levels indoors, enclosed space settings must be adjusted to maximize air quality while minimizing energy consumption. Studying the effect of these settings on carbon dioxide concentration levels is not feasible through physical experimentation and data collection. This problem can be solved by using validated simulation models, generating indoor settings scenarios, simulating those scenarios, and studying results. In previous work, we presented a formal Cellular Discrete Event System Specifications simulation model for studying carbon dioxide dispersion in rooms with various settings. However, designers may need to predict the results of altering large combinations of settings on air quality. Generating and simulating multiple scenarios with different combinations of space settings to test their effect on indoor air quality is time-consuming. In this research, we solve the two problems of the lack of ground truth data and the inefficiency of producing and studying simulation results for many combinations of settings by proposing a novel framework. The framework utilizes a Cellular Discrete Event System Specifications model, simulates different scenarios of enclosed spaces with various settings, and collects simulation results to form a data set to train a deep neural network. Without needing to generate all possible scenarios, the trained deep neural network is used to predict unknown settings of the closed space when other settings are altered. The framework facilitates configuring enclosed spaces to enhance air quality. We illustrate the framework uses through a case study.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3