A Multiway Design-driven Partitioning Algorithm for Distributed Verilog Simulation

Author:

Lijun Li 1,Tropper Carl2

Affiliation:

1. School of Computer Science McGill University Montreal, Canada,

2. School of Computer Science McGill University Montreal, Canada

Abstract

Many partitioning algorithms have been proposed for distributed Very-large-scale integration (VLSI) simulation. Typically, they make use of a gate level netlist and attempt to achieve a minimal cutsize subject to a load balance constraint. The algorithm executes on a hypergraph which represents the netlist. We propose a design-driven iterative partitioning algorithm for Verilog based on module instances instead of gates. We do this in order to take advantage of the design hierarchy information contained in the modules and their instances. A Verilog instance represents one vertex in the circuit hypergraph. The vertex can be flattened into multiple vertices in the event that a load balance is not achieved by instance-based partitioning. In this case, the algorithm flattens the largest instance and moves gates between the partitions in order to improve the load balance. Our experiments show that this partitioning algorithm produces a smaller cutsize than is produced by hMetis on a gate-level netlist. It produces better speedup for the simulation because it takes advantage of the design hierarchy.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. FNM;ACM Transactions on Modeling and Computer Simulation;2016-01-28

2. An Novel F-M Partitioning Algorithm for Parallel Logic Simulation;Lecture Notes in Electrical Engineering;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3