Computational fluid dynamics simulation of blood flow profile and shear stresses in bileaflet mechanical heart valve by using monolithic approach

Author:

Kadhim Saleem Khalefa1,Nasif Mohammad Shakir1,Al-Kayiem Hussain H1,Al-Waked Rafat2

Affiliation:

1. Mechanical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia

2. School of Applied Technical Sciences, German Jordanian University, Amman, Jordan

Abstract

Bileaflet mechanical heart valves (BMHVs) are widely used to replace diseased heart valves. However, patients may suffer from implant complications, such as platelet aggregation and damage to blood cells, which could lead to BMHV failure. These complications are related to the blood flow patterns in the BMHV. A three-dimensional computational fluid dynamic (CFD) model was developed to investigate blood hydrodynamics and shear stresses at different cardiac cycles. A user-defined function (UDF) code was developed to model the valve leaflet motion. This UDF updates the tetrahedral mesh according to the location of the valve leaflet, which enables modeling of complicated moving geometries and achieves solution convergence with ease without the need to adjust the relaxation factor values. The agreement between the experimental and numerical results indicates that the developed model could be used with confidence to simulate BMHV motion and blood flow. Furthermore, valve leaflet and valve pivot were found to be continuously exposed to shear stresses higher than 52.3 Pa which according to previous research findings may cause damage to blood platelets.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3