A demonstration of using the model reference principle to develop the function-oriented adaptive pulse-coded neural network

Author:

Sharma B Lungsi1,Wells Richard B2

Affiliation:

1. Computational Neuroscience, Ronin Institute, France

2. Neuroscience, Electrical & Computer Engineering, University of Idaho, USA

Abstract

How can one design an adaptive pulsed neural network that is based on psycho-phenomenological foundations? In other words, how can one migrate the adaptive capability of a psychologically modeled neural network to a pulsed network? Neural networks that model psychological phenomena are at a larger scale than physiological models. There is a common presumption that pulse-coded neural network analogs to non-pulsing networks can be obtained by a simple mapping and scaling process of some sort. But the actual in vivo environment of pulse-coded neural network systems produces a much more diverse set of firing patterns. Thus, functional mapping from traditional neural network systems to pulse-coded neural network systems is much more challenging than has been presumed. This paper demonstrates that the employment of model reference adaptation as a method for applying scientific reduction is a powerful design tool for the development of a function-oriented adaptive pulse-coded neural network. The performance surface is empirically obtained by comparing the performance of the pulsed network to the non-pulsing network. Based on this surface, the adaptive algorithm is a combination of gain scheduling and steepest-descent method. Therefore, the adaptive property of the pulse-coded neural network is built upon a psycho-physiological foundation.

Funder

national center for research resources

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3