A parameter adaptive identification method for a pumped storage hydro unit regulation system model using an improved gravitational search algorithm

Author:

Xu Yanhe1,Zhou Jianzhong1,Zhang Chu1,Zhang Yuncheng1,Li Chaoshun1,Qian Zhongdong2

Affiliation:

1. School of Hydropower and Information Engineering, Huazhong University of Science and Technology, P R China

2. State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, P R China

Abstract

With increasing wind farm, solar farm, and pump storage plant integrations, intense frequency fluctuation of the pumped storage hydro unit (PSHU) under the no-load running condition, which is caused by its operation along the S-shaped curve, has been noted and researched. So, parameter identification of the PSHU regulation system (PSHURS) is crucial in precise modeling of the PSHU and can provide support for the optimized control and stability analysis of the power system. In this paper, a parameter adaptive identification method together with an improved gravitational search algorithm (IGSA) is proposed and applied to solve the identification problem for a PSHURS under the no-load condition. The IGSA, which is based on the standard gravitational search algorithm, accelerates convergence speed with a combination of the Pbest- Gbest-guided search strategy and the adaptive elastic-ball method and improves the local optimal with the added chemotaxis operator of the bacterial foraging algorithm. Furthermore, for the parameter adaptive identification method, the parameter performance evaluator is employed to devise the moving step of the agent of the chemotaxis operator. The illustrative experiment for parameter identification of the PSHURS is used to verify the feasibility and effectiveness of the proposed method. Comparison with other methods clearly shows that the adaptive parameter identification method along with the IGSA perform best for all identification indicators.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3