Affiliation:
1. Laboratorio de Sistemas Dinámicos, FCEIA - UNR - CIFASIS- CONICET, Argentina.
2. Department of Computer Science, ETH Zurich, Switzerland.
Abstract
In this paper we introduce new classes of numerical ordinary differential equation (ODE) solvers that base their internal discretization method on state quantization instead of time slicing. These solvers have been coined quantized state system (QSS) simulators. The primary result of the research described in this article is a first-order accurate QSS-based stiff system solver, called the backward QSS (BQSS). The numerical properties of this new algorithm are discussed, and it is shown that this algorithm exhibits properties that make it a potentially attractive alternative to the classical numerical ODE solvers. Some simulation examples illustrate the advantages of this method. As a collateral result, a first-order accurate QSS-based solver designed for solving marginally stable systems is briefly outlined as well. This new method, called the centered QSS (CQSS), is successfully applied to a challenging benchmark problem describing a high-order system that is simultaneously stiff and marginally stable. However, the primary emphasis of this article is on the BQSS method, that is, on a stiff system solver based on state quantization.
Subject
Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献