Exploiting grid technologies for the simulation of clinical trials: the paradigm of in silico radiation oncology

Author:

Athanaileas Theodoros1,Menychtas Andreas2,Dionysiou Dimitra2,Kyriazis Dimosthenis2,Kaklamani Dimitra2,Varvarigou Theodora2,Uzunoglu Nikolaos2,Stamatakos Georgios2

Affiliation:

1. School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, Athens, Greece,

2. School of Electrical and Computer Engineering, National Technical University of Athens, Zografou, Athens, Greece

Abstract

In silico (on the computer) oncology is a complex and multiscale combination of sciences and technologies that focuses on the study and modelling of biological mechanisms related to the phenomenon of cancer at all levels of biocomplexity. In silico oncology simulation models may be used for evaluating and comparing different therapeutic schemes, while at the same time considering different values of critical parameters which present substantial inter-patient variability. As the number of the involved parameters characterizing both the complex tumour biosystem and possible treatment schemes increases, the resulting exponential increase in computational requirements makes the use of a grid environment for the execution of the simulations a particularly attractive solution. In this paper, a grid-enabled simulation environment for the execution of in silico oncology radiotherapy simulations on grid infrastructures is presented and implementation details are discussed. The environment provides a web portal as the end-user interface and contains advanced features that facilitate the execution of in silico oncology simulations in grid environments. Special consideration has been given during the development of the environment in order to simplify the maintenance and extension of the application, while additional services for Quality of Service provisioning have been applied. The simulation environment has been employed in order to perform several scenarios of glioblastoma multiforme radiotherapy simulations on the Enabling Grids for E-sciencE (EGEE) grid infrastructure. Indicative simulation results, as well as statistics regarding execution times on the grid, are presented.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3