Affiliation:
1. Department of Management/Center for Economic Research (CentER), Tilburg University, The Netherlands
2. School of Business, Central South University, China
Abstract
Because computers (except for parallel computers) generate simulation outputs sequentially, we recommend sequential probability ratio tests (SPRTs) for the statistical analysis of these outputs. However, until now simulation analysts have ignored SPRTs. To change this situation, we review SPRTs for the simplest case; namely, the case of choosing between two hypothesized values for the mean simulation output. For this case, the classic SPRT of Wald (Wald A. Sequential tests of statistical hypotheses. Ann Math Stat 1945; 16: 117–186) allows general types of distribution, including normal distributions with known variances. A modification permits unknown variances that are estimated. Hall (Hall WJ. Some sequential analogs of Stein’s two-stage test. Biometrika 1962; 49: 367–378) developed a SPRT that assumes normal distributions with unknown variances estimated from a pilot sample. A modification uses a fully sequential variance estimator. In this paper, we quantify the performance of the various SPRTs, using several Monte Carlo experiments. In experiment #1, simulation outputs are normal. Whereas Wald’s SPRT with estimated variance gives too high error rates, Hall’s original and modified SPRTs are “conservative”; that is, the actual error rates are smaller than those prespecified (nominal). Furthermore, our experiment shows that the most efficient SPRT is Hall’s modified SPRT. In experiment #2, we estimate the robustness of these SPRTs for non-normal output. For these two experiments, we provide details on their design and analysis; these details may also be useful for simulation experiments in general.
Funder
national natural science foundation of china
Subject
Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献