Implementation of 802.11ax and cell-free massive MIMO scenario for 6G wireless network analysis extending OMNeT++ simulator

Author:

Inzillo Vincenzo1ORCID,Ariza Quintana Alfonso2

Affiliation:

1. Department of Computer Science, IIS-ITG-ITI VV, Italy

2. University of Malaga, Spain

Abstract

In an era where ubiquitous connectivity and escalating data demands are altering the landscape of wireless communications, our paper proposes a pioneering enhancement for the OMNeT++ simulator to support the advanced features of IEEE 802.11ax high efficiency (HE) alongside cell-free massive multiple-input multiple-output (MIMO) systems. Traditional wireless networks face daunting challenges in sustaining elevated quality of service (QoS), primarily due to fluctuating user densities and signal quality. Cell-free massive MIMO serves as a compelling answer to this predicament by decentralizing the cellular architecture. It eradicates conventional cell boundaries, furnishing uniform QoS regardless of user locations. However, these advancements come at the expense of complex backhaul networks and articulated joint signal processing. The 802.11ax standard, touted for its robustness and efficiency, remains underexplored in this new paradigm. Our research not only dissects the architectural elements and constraints of both 802.11ax and cell-free massive MIMO but also elaborates on the adaptations required to extend OMNeT++ functionalities for these technologies. By doing so, we bridge a crucial gap, enabling the simulator to provide a more precise, detailed, and scalable evaluation of emerging 6G scenarios and directional communications also taking into account the impact of the most known routing protocols such as dynamic source routing (DSR), ad hoc on-demand distance vector routing (AODV), optimized link state routing (OLSR), and dynamic mobile ad hoc network on-demand (DYMO) that were selected for this comparative study. The proposed extensions promise to revolutionize network simulations and lay the foundation for in-depth analyses of wireless systems in complex and dynamic environments. Through extensive simulations, our study demonstrates that cell-free massive MIMO configurations significantly improve network throughput in high-density mobile ad hoc network (MANET) environments, with results indicating an average throughput gain of up to 30% compared with non-cell-free configurations. This improvement highlights the efficacy of cell-free massive MIMO to take advantage of the spatial and frequency multiplexing capabilities inherent in the 802.11ax standard, making it a promising solution for future wireless systems in densely populated areas.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3