Affiliation:
1. Department of Computer Science and Automation Indian Institute of Science Bangalore 560 012 India
2. School of Technology and Computer Science Tata Institute of Fundamental Research Homi Bhabha Road Mumbai 400 005 India
Abstract
The authors propose a two-timescale version of the one-simulation smoothed functional (SF) algorithm with extra averaging. They also propose the use of a chaotic simple deterministic iterative sequence for generating random samples for averaging. This sequence is used for generating the N independent and identically distributed (i.i.d.), Gaussian random variables in the SF algorithm. The convergence analysis of the algorithms is also briefly presented. The authors show numerical experiments on the chaotic sequence and compare performance with a good pseudo-random generator. Next they show experiments in two different settings—a network of M/G/1 queues with feedback and the problem of finding a closed-loop optimal policy (within a prespecified class) in the available bit rate (ABR) service in asynchronous transfer mode (ATM) networks, using all the algorithms. The authors observe that algorithms that use the chaotic sequence show better performance in most cases than those that use the pseudo-random generator.
Subject
Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献