Comparison of partial least square algorithms in hierarchical latent variable model with missing data

Author:

Cheng Hao1234ORCID

Affiliation:

1. National Academy of Innovation Strategy, China Association for Science and Technology, China

2. School of Statistics, Renmin University of China, China

3. Department of Biostatistics, Columbia University, USA

4. Needham Research Institute, Cambridge University, UK

Abstract

Missing data is almost inevitable for various reasons in many applications. For hierarchical latent variable models, there usually exist two kinds of missing data problems. One is manifest variables with incomplete observations, the other is latent variables which cannot be observed directly. Missing data in manifest variables can be handled by different methods. For latent variables, there exist several kinds of partial least square (PLS) algorithms which have been widely used to estimate the value of latent variables. In this paper, we not only combine traditional linear regression type PLS algorithms with missing data handling methods, but also introduce quantile regression to improve the performances of PLS algorithms when the relationships among manifest and latent variables are not fixed according to the explored quantile of interest. Thus, we can get the overall view of variables’ relationships at different levels. The main challenges lie in how to introduce quantile regression in PLS algorithms correctly and how well the PLS algorithms perform when missing manifest variables occur. By simulation studies, we compare all the PLS algorithms with missing data handling methods in different settings, and finally build a business sophistication hierarchical latent variable model based on real data.

Funder

renmin university of china

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KNN-SVM Classifiers in Complex Diagnosis;Journal of Physics: Conference Series;2024-01-01

2. Second Order Model with Composite Quantile Regression;Journal of Physics: Conference Series;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3