An alternative approach for collaborative simulation execution on a CPU+GPU hybrid system

Author:

Tang Wenjie1ORCID,Cai Wentong2,Yao Yiping1,Song Xiao3,Zhu Feng1ORCID

Affiliation:

1. National University of Defense Technology, China

2. Nanyang Technological University, Singapore

3. Beihang University, China

Abstract

In the past few years, the graphics processing unit (GPU) has been widely used to accelerate time-consuming models in simulations. Since both model computation and simulation management are main factors that affect the performance of large-scale simulations, only accelerating model computation will limit the potential speedup. Moreover, models that can be well accelerated by a GPU could be insufficient, especially for simulations with many lightweight models. Traditionally, the parallel discrete event simulation (PDES) method is used to solve this class of simulation, but most PDES simulators only utilize the central processing unit (CPU) even though the GPU is commonly available now. Hence, we propose an alternative approach for collaborative simulation execution on a CPU+GPU hybrid system. The GPU supports both simulation management and model computation as CPUs. A concurrency-oriented scheduling algorithm was proposed to enable cooperation between the CPU and the GPU, so that multiple computation and communication resources can be efficiently utilized. In addition, GPU functions have also been carefully designed to adapt the algorithm. The combination of those efforts allows the proposed approach to achieve significant speedup compared to the traditional PDES on a CPU.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extending CloudSim to simulate sensor networks;SIMULATION;2022-06-20

2. Evaluation of Large Scale RoI Mining Applications in Edge Computing Environments;2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT);2021-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3