Affiliation:
1. National University of Defense Technology, China
2. Nanyang Technological University, Singapore
3. Beihang University, China
Abstract
In the past few years, the graphics processing unit (GPU) has been widely used to accelerate time-consuming models in simulations. Since both model computation and simulation management are main factors that affect the performance of large-scale simulations, only accelerating model computation will limit the potential speedup. Moreover, models that can be well accelerated by a GPU could be insufficient, especially for simulations with many lightweight models. Traditionally, the parallel discrete event simulation (PDES) method is used to solve this class of simulation, but most PDES simulators only utilize the central processing unit (CPU) even though the GPU is commonly available now. Hence, we propose an alternative approach for collaborative simulation execution on a CPU+GPU hybrid system. The GPU supports both simulation management and model computation as CPUs. A concurrency-oriented scheduling algorithm was proposed to enable cooperation between the CPU and the GPU, so that multiple computation and communication resources can be efficiently utilized. In addition, GPU functions have also been carefully designed to adapt the algorithm. The combination of those efforts allows the proposed approach to achieve significant speedup compared to the traditional PDES on a CPU.
Subject
Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Extending CloudSim to simulate sensor networks;SIMULATION;2022-06-20
2. Evaluation of Large Scale RoI Mining Applications in Edge Computing Environments;2021 IEEE/ACM 25th International Symposium on Distributed Simulation and Real Time Applications (DS-RT);2021-09-27