Thermo-elastohydrodynamic lubrication simulation of the Rayleigh step bearing using the progressive mesh densification method

Author:

Kumar Rahul1ORCID,Azam Mohammad Sikandar1,Ghosh Subrata Kumar1ORCID,Khan Hasim2

Affiliation:

1. Department of Mechanical Engineering, Indian Institute of Technology (ISM), India

2. Department of Mathematics, College of Sciences, Jazan University, Saudi Arabia

Abstract

The paper deals with the numerical simulation of thermo-elastohydrodynamic lubrication (Thermo-EHL) condition in the Rayleigh step bearing. Thermo-EHL involves rheology of the lubricant and deformation of the structure simultaneously under the influence of pressure and temperature, which makes this regime of lubrication more complicated. It is difficult to obtain a converged and accurate solution with ease under this condition. The effect of computational mesh density plays a significant role in obtaining a converged solution rapidly. In this paper, the progressive mesh densification (PMD) method has been applied to solve the Thermo-EHL condition numerically. To find out the best possible scheme of PMD for obtaining a converged solution quickly, the results of PMD and fixed mesh density (FMD) have been compared. Based on the comparison, it has been observed that Scheme 3 of PMD takes around 30% fewer iterations compared with FMD under both elastohydrodynamic lubrication (EHL) and Thermo-EHL conditions. Adopting Scheme 3 of PMD, the effect of temperature on the load capacity, coefficient of friction, no-pressure zone, and pressure distribution in the Rayleigh step bearing has been studied. Reductions in pressure, no-pressure zone, frictional coefficient, and load capacity are observed under the Thermo-EHL condition compared to the EHL condition.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3