Pseudo-random number generation based on digit isolation referenced to entropy buffers

Author:

Richardson Joseph D.1ORCID

Affiliation:

1. William B. Burnsed Jr. Department of Mechanical, Aerospace, and Biomedical Engineering Department, University of South Alabama, USA

Abstract

Unpredictable pseudo-random number generators (PRNGs) are presented based on dissociated components with only coincidental interaction. The first components involve pointers taken from series of floating point numbers (float streams) arising from arithmetic. The pointers are formed by isolating generalized digits sufficiently far from the most significant digits in the float streams and may be combined into multi-digit pointers. The pointers indicate draw locations from the second component which are entropy decks having one or more cards corresponding to the elements used to assemble random numbers. Like playing cards, decks are cut and riffle-shuffled based on rules using digits appearing in the simulations. The various ordering states of the cards provide entropy to the PRNGs. The dual nature of the PRNGs is novel since they can operate either entirely on pointer variability to fixed decks or on shuffling variability using fixed pointer locations. Each component, pointers and dynamic entropy, is dissociated from the other and independently shown to pass stringent statistical tests with the other held as fixed; a “gold standard” mode involves changing the coincidental interaction between these two strong emulators of randomness by either cutting or shuffling prior to each draw. Gold standard modes may be useful in cryptography and in assessing tests themselves. One PRNG contains [Formula: see text] states in the entropy pool, another generates integers approximately 50% faster than the Advanced Encryption Standard (AES) PRNG with similar empirical performance, and a third generates full double-precision floats at speeds comparable to unsigned integer rates of the AES PRNG.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3