Importance Sampling to Evaluate Real-time System Reliability: A Case Study

Author:

Durairaj G.1,Koren I.1,Krishna C.M.1

Affiliation:

1. Dept. of Electrical and Computer Engineering University of Massachusetts, Amherst

Abstract

Real-time distributed computers are often used in life- critical applications. However, the complexity of such systems calls for extensive simulation studies to validate their performance and reliability before a design can be accepted and a prototype constructed. A simulator testbed has been built to model a variety of such systems quickly from a few basic building blocks. Life-critical applications require reliability levels so high that brute-force simula tion to validate these levels would take weeks of computer time. In this paper, we present studies we have conducted into the use of importance sampling in simulating real- time systems. This paper presents a interesting case- study of the use of importance sampling in an increas ingly important branch of computer engineering. Impor tance sampling may not work for all cases and over all parameter ranges. In this paper, we are interested in finding out whether (and how well) this scheme works for the case of distributed real-time systems and also the range of failure bias values for which it works well. Specifically, we look at the implementation of two heuris tics called 'forcing' and failure biasing' in the testbed. This was validated by comparing the reliability estimates with that of normal (very long) simulation. The effect of the failure bias on the dynamics of the scheme is also investigated to provide readers with some guidance on choosing appropriate bias values.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Techniques;Fault-Tolerant Systems;2021

2. An Investigation on Distributed Real-Time Embedded System;Social Networking and Computational Intelligence;2020

3. A Hardware Accelerated Semi Analytic Approach for Fault Trees with Repairable Components;2009 11th International Conference on Computer Modelling and Simulation;2009

4. Simulation Techniques;Fault-Tolerant Systems;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3