Numerical simulation of the fire emergency evacuation for a metro platform accident

Author:

Xie Jiabin1,Chen Kecheng1,Kwan Trevor Hocksun1,Yao Qinghe1ORCID

Affiliation:

1. School of Aeronautics and Astronautics, Sun Yat-Sen University, Guangzhou, China

Abstract

A coupled analysis of agent behavior and Computational Fluid Dynamics (CFD) model is applied to investigate the fire evacuation effectiveness in a popular metro station in Guangzhou, China. Due to the high density and complexity of traffic, the concept of Required Safe Escape Time and Available Safe Escape Time (RSET/ASET), which is more flexible and adaptable than the “6 minutes” principle, is applied in the safety assessment of fire evacuation. To pursue a stable simulation of the coupled model, the standard Critical Radiant Flux is used to deter the tenability criteria for exposure to fire and heat. Various related factors, including the fire location, the Heat Release Rate (HRR) of fire, the crowd density, and the operation mode of escalators, are analyzed through a series of simulations. Results indicate that the interaction between fire and humans should not be neglected in the evacuation simulation. Both the fire location and the crowd density have a significant effect on the evacuation, while the HRR of fire has a minor impact. When the accident happens at the entrance of an escalator, RSET is 58.3% longer than that when the accident occurs in the middle of the platform. RSET grows with the increase of the crowd density linearly. Besides, the evacuation efficiency could be partly improved by changing escalators that usually operate in the descending mode into ascending mode.

Funder

national key research and development program of china stem cell and translational research

The Guangdong MEPP Fund

guangzhou science and technology program key projects

the national key R&D program for HPC

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3