High-performance computing simulations of self-gravity in astronomical agglomerates

Author:

Rocchetti Néstor1ORCID,Nesmachnow Sergio1,Tancredi Gonzalo1

Affiliation:

1. Universidad de la República, Uruguay

Abstract

This article describes the advances in the design, implementation, and evaluation of efficient algorithms for self-gravity simulations in astronomical agglomerates. Three algorithms are presented and evaluated: the occupied cells method, and two variations of the Barnes–Hut method using an octal and a binary tree. Two scenarios are considered in the evaluation: two agglomerates orbiting each other and a collapsing cube. The results show that the proposed octal tree Barnes–Hut method allows improving the performance of the self-gravity calculation up to 100 times with respect to the occupied cells method, while having good numerical accuracy. The proposed algorithms are efficient and accurate methods for self-gravity simulations in astronomical agglomerates.

Funder

agencia nacional de investigación e innovación

PEDECIBA

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3