Modeling a powered wheelchair with slipping and gravitational disturbances on inclined and non-inclined surfaces

Author:

Onyango Stevine O1,Hamam Yskandar1,Djouani Karim1,Daachi Boubaker2

Affiliation:

1. F’SATI, Tshwane University of Technology, South Africa

2. Laboratoire d’Informatique Avancée de Saint de Denis (LIASD), University of Paris, France

Abstract

Wheelchairs are broadly accepted and are widespread because of the assistance they provide to people with limited mobility. The design of a good controller generally involves the formulation of a comprehensive wheelchair model. Most dynamic models in the literature presume non-inclined planer surfaces within-doors, and therefore fail to take the combined effects of both gravitational forces and rolling friction on the usable-traction into consideration. Wheel-slip situations are also commonly neglected. This paper contributes to wheelchair modeling by proposing and formulating a dynamic model that considers the effects of rolling friction and gravitational potential on the wheelchair’s road-load force, on both inclined and non-inclined surfaces. The dynamic model is derived through the Euler Lagrange procedure, and wheel slip is determined by an approach that reduces the convectional number of slip-detection encoders. In the closed-loop model, the input-output feedback controller is proposed for tracking the user inputs by torque compensation. The optimality of the resulting minimum-phase closed-loop system is then ensured through the performance index of the non-linear continuous-time generalized predictive control with good simulation results.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A versatile dynamic noise control framework based on computer simulation and modeling;Nonlinear Engineering;2023-01-01

2. Slip risk analysis on the surface of floors in public utility buildings;Journal of Building Engineering;2022-08

3. Modelling and control strategies for a motorized wheelchair with hybrid locomotion systems;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2021-01

4. A Biomechanical Model of Hand-Joystick Interaction of Powered Wheelchair User;2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC);2020-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3