Development of an agent-based model incorporating Function–Behavior–Structure framework to enable systems engineering design process evaluation

Author:

Bott Mitch1ORCID,Mesmer Bryan1

Affiliation:

1. College of Science, The University of Alabama in Huntsville, USA

Abstract

An important step in the development of any process is evaluation. Evaluation ensures that the process affects effectiveness, efficiency, or other metrics as designed. Without evaluation, processes must stand solely on the theories, axioms, and/or heuristics that formed them. Outcome or objectives-based evaluations are especially useful in seeing if the expected impact is realized. Systems and design engineering present problems for outcome evaluations due to system design efforts being long in duration, expensive, organization/team specific, and environment/context specific. These characteristics make repeating the same effort under the same conditions using different processes difficult, if not impossible. While a comparison of processes for evaluation in a real application may not be feasible, a simulation of the processes with agents that capture system design behaviors may produce findings to support hypotheses. This paper examines the use of agent-based modeling and simulation to compare pseudo-waterfall and pseudo-agile engineering processes for a simple design problem. The Function–Behavior–Structure (FBS) model of design is used along with empirical data from FBS studies to examine the performance of a two-person design team using pseudo-waterfall and pseudo-agile engineering processes. The results of this exercise show possible advantages of agile-like processes in total time to complete the design.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3