Affiliation:
1. Ingram School of Engineering, Texas State University, San Marcos, TX, USA
Abstract
Wind turbines experience stochastic loading due to seasonal variations in wind speed and direction. These harsh operational conditions lead to failures of wind turbines, which are difficult to predict. Consequently, it is challenging to schedule maintenance actions that will avoid failures. In this article, a simulation-driven online maintenance scheduling algorithm for wind farm operational planning is derived. Online scheduling is a suitable framework for this problem since it integrates data that evolve over time into the maintenance scheduling decisions. The computational study presented in this article compares the performance of the simulation-driven online scheduling algorithm against two benchmark algorithms commonly used in practice: scheduled maintenance and condition-based monitoring maintenance. An existing discrete event system specification simulation model was used to test and study the benefits of the proposed algorithm. The computational study demonstrates the importance of avoiding over-simplistic assumptions when making maintenance decisions for wind farms. For instance, most literature assumes maintenance lead times are constant. The computational results show that allowing lead times to be adjusted in an online fashion improves the performance of wind farm operations in terms of the number of turbine failures, availability capacity, and power generation.
Funder
National Science Foundation
Subject
Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献