Patterns for Automatic Generation of Soft Real-time System Models

Author:

Florescu Oana1,Voeten Jeroen2,Theelen Bart1,Corporaal Henk1

Affiliation:

1. Eindhoven University of Technology, Embedded Systems Institute PO Box 513, 5600 MB, Eindhoven, The Netherlands

2. Eindhoven University of Technology, Embedded Systems Institute PO Box 513, 5600 MB, Eindhoven, The Netherlands,

Abstract

Worst-case assumptions about the timing of systems are often too conservative when analyzing distributed soft real-time systems as they lead to over-dimensioned and expensive products. For these systems, a certain percentage of deadline misses is often affordable. Instead of a binary answer regarding the schedulability of such a system, a more interesting metric is the degree to which the system meets the timing requirements. For this, an appropriate model that realistically expresses the behavior of a soft real-time system when deployed on a multiprocessor platform should be built and analyzed. In this article, we present such a modeling approach based on the formal modeling language POOSL (parallel object-oriented specification language). Moreover, to alleviate the process of modeling, we present a pattern-based description language that allows an application, together with the multiprocessor platform and the deployment to be described in a concise way. Such a pattern-based description can be translated automatically into an executable POOSL model through which performance properties can be analyzed based on simulations. The suitability of our approach is demonstrated by exploring the design space of a distributed in-car radio navigation system.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An approach for modeling and detecting software performance antipatterns based on first-order logics;Software & Systems Modeling;2012-04-21

2. Principles of Discrete Event System Specification model verification;SIMULATION;2011-10-23

3. Engineering Quality Requirements Using Quality Models;2010 15th IEEE International Conference on Engineering of Complex Computer Systems;2010-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3