Simulation-based optimization of discrete event systems with alternative structural configurations using distributed computation and the Petri net paradigm

Author:

Latorre Juan-Ignacio1,Jiménez Emilio2

Affiliation:

1. Department of Mechanical Engineering Energetics and Materials, Public University of Navarre, Spain

2. Department of Electrical Engineering, University of La Rioja, Spain

Abstract

Decision-making on discrete event systems with alternative structural configurations is a field with application to the efficient design and operation of many systems, ranging from manufacturing facilities to communication networks. The solution of this problem may be afforded by its transformation into an optimization problem. A variety of statements for this optimization problem can be presented by using different formalisms able to describe the model of the system. These different statements allow developing diverse optimization algorithms for solving the problem, which may be very demanding for a computer. In this paper, several approaches are presented in order to reduce the computing requirements needed by the mentioned algorithms, some of them are implemented in one processor and others are based on distributed computing. In particular, this paper presents a new distributed methodology, which associates sets of alternative structural configurations of the system to different alternative aggregation Petri net (AAPNs), regarding the number of available processors. Under certain conditions, this methodology alleviates the computational requirements for every processor and speeds up the optimization process. A case-study is presented and different techniques are applied to solve it, for illustrating diverse distributed and non-distributed methodologies, regarding the available processors, as well as for comparing their relative performance.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modelling and Simulation,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3