A hierarchical multi-resolution agent-based modeling and simulation framework for household electricity demand profile

Author:

Mahmood Imran12ORCID,Quair-tul-ain 2,Nasir Hasan Arshad2,Javed Fahad2,Aguado José A3

Affiliation:

1. Department of Computer Science, College of Engineering Design and Physical Sciences, Brunel University, UK

2. Center for Research in Modeling and Simulation (CRIMSON), School of Electrical Engineering and Computer Science (SEECS), National University of Sciences and Technology (NUST), Pakistan

3. Department of Electrical Engineering, Universidad de Malaga, Spain

Abstract

Analyzing demand behavior of end consumers is pivotal in long term energy planning. Various models exist for simulating household load profiles to cater different purposes. A macroscopic viewpoint necessitates modeling of a large-scale population at an aggregate level, whereas a microscopic perspective requires measuring loads at a granular level, pertinent to the individual devices of a household. Both aspects have lucrative benefits, instigating the need to combine them into a modeling framework which allows model scalability and flexibility, and to analyze domestic electricity consumption at different resolutions. In this applied research, we propose a multi-resolution agent-based modeling and simulation (ABMS) framework for estimating domestic electricity consumption. Our proposed framework simulates per minute electricity consumption by combining large neighborhoods, the behavior of household individuals, their interactions with the electrical appliances, their sociological habits and the effects of exogenous conditions such as weather and seasons. In comparison with the existing energy models, our framework uniquely provides a hierarchical, multi-scale, multi-resolution implementation using a multi-layer architecture. This allows the modelers flexibility in order to model large-scale neighborhoods at one end, without any loss of expressiveness in modeling microscopic details of individuals’ activities at house level, and energy consumption at the appliance level, at the other end. The validity of our framework is demonstrated using a case study of 264 houses. A validated ABMS framework will support: (a) Effective energy planning; (b) Estimation of the future energy demand; (c) and the analysis of the complex dynamic behavior of the consumers.

Funder

US Pakistan Center for Advance Studies in Energy

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3