A simulation approach for COVID-19 pandemic assessment based on vaccine logistics, SARS-CoV-2 variants, and spread rate

Author:

Erkayman Burak1ORCID,Ak Ferhat1,Çodur Sadrettin2ORCID

Affiliation:

1. Industrial Engineering, Ataturk University, Turkey

2. Arakli Ali Cevat Ozyurt Vocational School, Karadeniz Technical University, Turkey

Abstract

Despite advances in clinical care for the coronavirus (COVID-19) pandemic, population-wide interventions are vital to effectively manage the pandemic due to its rapid spread and the emergence of different variants. One of the most important interventions to control the spread of the disease is vaccination. In this study, an extended Susceptible-Infected Healed (SIR) model based on System Dynamics was designed, considering the factors affecting the rate of spread of the COVID-19 pandemic. The model predicts how long it will take to reach 70% herd immunity based on the number of vaccines administered. The designed simulation model is modeled in AnyLogic 8.7.2 program. The model was performed for three different vaccine supply scenarios and for Turkey with ~83 million population. The results show that, with a monthly supply of 15 million vaccines, social immunity reached the target value of 70% in 161 days, while this number was 117 days for 30 million vaccines and 98 days for 40 million vaccines.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3