Efficient and effective automated surveillance agents using kernel tricks

Author:

Ahmed Tarem12,Wei Xianglin3,Ahmed Supriyo2,Pathan Al-Sakib Khan1

Affiliation:

1. Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia

2. Department of Electrical and Electronic Engineering, BRAC University, Dhaka, Bangladesh

3. Department of Computer Science and Engineering, PLA University of Science and Technology, Nanjing, China

Abstract

Many schemes have been presented over the years to develop automated visual surveillance systems. However, these schemes typically need custom equipment, or involve significant complexity and storage requirements. In this paper we present three software-based agents built using kernel machines to perform automated, real-time intruder detection in surveillance systems. Kernel machines provide a powerful data mining technique that may be used for pattern matching in the presence of complex data. They work by first mapping the raw input data onto a (often much) higher-dimensional feature space, and then clustering in the feature space instead. The reasoning is that mapping onto the (higher-dimensional) feature space enables the comparison of additional, higher-order correlations in determining patterns between the raw data points. The agents proposed here have been built using algorithms that are adaptive, portable, do not require any expensive or sophisticated components, and are lightweight and efficient having run times of the order of hundredths of a second. Through application to real image streams from a simple, run-of-the-mill closed-circuit television surveillance system, and direct quantitative performance comparison with some existing schemes, we show that it is possible to easily obtain high detection accuracy with low computational and storage complexities.

Publisher

SAGE Publications

Subject

Computer Graphics and Computer-Aided Design,Modeling and Simulation,Software

Reference50 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3