Rigid–flexible coupled dynamic response of steel–concrete bridges on expressways considering vehicle–road–bridge interaction

Author:

Chen Enli1,Zhang Xia1ORCID,Wang Gaolei1

Affiliation:

1. State Key Laboratory of Mechanical Behavior in Traffic Engineering Structure and System Safety, Shijiazhuang Tiedao University, Shijiazhuang, China

Abstract

Steel–concrete bridges on highways are now widely used, and their dynamic coupling effect is more prominent under heavy vehicles. At present, for the study of vehicle–bridge coupling, it is difficult to reflect the mechanical response characteristics of the bridge pavement because the bridge pavement (road) is often considered as a load. In order to get closer to reality, we use the whole vehicle model and the bridge model to realize the dynamic coupling of highway vehicle–bridge. Moreover, the vehicle model can take into account tire characteristics, such as various linear and nonlinear suspension characteristics, and tire–ground contact characteristics. So, a new vehicle–road–bridge interaction method with higher computational efficiency is proposed. This method can be used not only to analyze the overall mechanical response of bridge structure such as deflection and stress but also to analyze the dynamic characteristics of driving vehicles and the coupling force between tires and pavement and then to analyze the dynamic deformation and stress of asphalt pavement layers on the bridge. First, according to the construction drawings of a steel–concrete bridge on a highway and a Dongfeng brand three-axle vehicle, a vehicle–road–bridge interaction rigid–flexible coupling model was established. Second, the correctness and effectiveness of the vehicle–road–bridge interaction model were verified by field testing. Finally, the dynamic response of the vehicle–road–bridge interaction rigid–flexible coupling model was analyzed.

Funder

National Natural Science Foundation of China

Transportation Department Project of Hebei

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3