Operational modal identification of structures based on improved empirical wavelet transform

Author:

Xia Qi1,Li Dan1,Hu Yi-ding2ORCID,Yang Ya-ru1,Deng Wei-yao2

Affiliation:

1. School of Civil Engineering, Southeast University, Nanjing, China

2. Faculty of Intelligent Manufacturing, Wuyi University, Jiangmen, China

Abstract

When empirical wavelet transform (EWT) is used to identify the modal parameters of civil engineering structures, the frequency band division is generally not accurate due to the noise effect on the Fourier spectrum. This phenomenon will lead to modal mixing and false modes in the analysis results. Therefore, this article establishes a signal frequency band division method by taking advantages of maximal spectrum technique and spectral skewness index. Combining the random decrement technique (RDT) and the least square method of single component modal parameter identification, an adaptive approach based on the improved EWT for operational modal parameter identification of civil engineering structures under stationary environmental excitations is proposed. The traditional frequency band division method based on EWT can not completely and effectively divide the meaningful frequency bands. While the proposed frequency band division technology based on the spectral skewness index can prevent the phenomenon of insufficient division and excessive division and realize adaptive frequency band division. The effectiveness of the proposed approach is validated by a numerical three-story frame and a field three-span concrete box girder bridge under ambient vibrations. The modal identification results from both numerical and experimental validations demonstrate that the proposed approach can effectively and accurately decompose the vibration responses and identify the structural modal parameters under operational conditions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Provincial Double Innovation Doctoral Program

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Guangdong Province

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3