Effects of temperature and lead core heating on response of seismically isolated bridges under near-fault excitations

Author:

Wang Hao1ORCID,Zheng Wen-Zhi1,Li Jian2,Gao Yu-Qi1

Affiliation:

1. Key Laboratory of C & PC Structures of Ministry of Education, Southeast University, Nanjing, China

2. Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, KS, USA

Abstract

Seismic responses of bridges isolated by lead rubber bearings under near-fault excitations are presented in this article. A bilinear force-deformation model is employed to represent the hysteretic behaviors of lead rubber bearings. The joint effects of ambient temperature, initial displacement, and lead core heating on the responses of seismically isolated bridges are investigated. Nonlinear time history analyses are conducted with the employed hysteretic models of lead rubber bearings. Comparisons of the responses with and without the joint effects are performed, in terms of maximum isolator displacements, maximum isolator forces, and base forces of the piers. Results show that ambient temperature, initial displacement, and lead core heating have significant joint effects on the responses of seismically isolated bridges. When such joint effects are ignored at low temperatures, the maximum isolator displacements could be overestimated, whereas the maximum isolator forces and the base forces could be underestimated. However, as for ambient temperatures above 20°C, the maximum isolator displacements could be underestimated, whereas the maximum isolator forces and the base forces could be overestimated with small maximum isolator displacements and underestimated with large maximum isolator displacements.

Funder

national basic research program of china (973 program)

Key Research & Development Plan Program of Jiangsu Province

National Scholarship Fund of China Scholarship Council

National Ten Thousand Talent Program for Young Top-notch Talents

National Natural Science Foundation of China

jiangsu province postdoctoral science foundation

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3