Affiliation:
1. Shandong University, Jinan, China
2. Shandong Jiaotong University, Jinan, China
Abstract
Thirty-two temperature sensors, a solar radiation sensor, wind speed, and direction sensor were installed on the bridge for the field monitoring of structural temperature, solar radiation, and wind. The frequency was set at 60 min for 211 days. Empirical equations were used to predict the maximum vertical and lateral temperature gradients, and the daily maximum and minimum mean temperatures of the corrugated steel web box girder. The results showed that the temperature gradient of the corrugated steel web box girder was closely related to the temperature gradient of air. The vertical maximum temperature gradient occurred at 4 pm. The height of the box girder had a significant effect on the accuracy of the predicted vertical maximum temperature gradient. Compared with the section without encased concrete, the maximum temperature gradient of the encased concrete section was reduced by 10.48%. Encased concrete showed minimal effect on both the vertical and lateral temperature gradient of the top plate part, however, the effect on the vertical temperature gradient of the haunch reduced by 17.19%. The maximum temperature gradient of corrugated steel with a composite encased concrete section was 4.12°C, which was less than that of the section without encased concrete at 5.06°C. The encased concrete had a significant effect on the maximum temperature gradient of corrugated steel web with a 26.99% deviation.
Funder
National Natural Science Foundation of China
Science and Technology Project of Transportation in Shandong Province
Subject
Building and Construction,Civil and Structural Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献