Effect of fiber angles on normal- and high-strength concrete-filled fiber-reinforced polymer tubes under monotonic axial compression

Author:

Zhang Bing1ORCID,Hu Xia-Min1,Zhao Qing1,Huang Tao1,Zhang Ning-Yuan1,Zhang Qian-Biao1

Affiliation:

1. College of Civil Engineering, Nanjing Tech University, Nanjing, China

Abstract

Concrete-filled fiber-reinforced polymer tubes are a novel form of composite columns, which are particularly attractive for structural members in harsh environments and seismic regions due to their corrosion resistance and ductile behavior. Over the past two decades, many studies have been conducted on concrete-filled fiber-reinforced polymer tubes under axial compression, and many stress–strain models have been proposed. However, existing studies mainly focused on concrete-filled fiber-reinforced polymer tubes with only hoop fibers. In order to investigate the effect of fiber angles (i.e. the fiber angle between the fiber orientation and the longitudinal axis of fiber-reinforced polymer tube), this study conducted axial compression tests of 42 concrete-filled fiber-reinforced polymer tubes with ±80°, ±60°, or ±45° fiber angles. These concrete-filled fiber-reinforced polymer tubes were constructed using normal-strength concrete or high-strength concrete. Fiber-reinforced polymer tube thickness was also investigated as an important parameter. In order to clarify the effect of fiber angles on the properties of fiber-reinforced polymer tubes, axial compression tests on 15 short fiber-reinforced polymer tubes and tensile split-disk tests on 75 fiber-reinforced polymer rings were conducted. Experimental results indicate that fiber angles had significant influences on the hoop properties of fiber-reinforced polymer tube; the confinement effect of fiber-reinforced polymer tube and the peak stress of the confined concrete decreased with the decrease of the absolute value of fiber angles, while the ultimate strain of the confined concrete increased with the decrease of the absolute value of fiber angles. Two existing stress–strain models, which were developed mainly on test results of concrete confined by fiber-reinforced polymer tubes with only hoop fibers, are capable of providing reasonably accurate predictions for concrete-filled fiber-reinforced polymer tubes with ±80° and ±60° fiber angles, but it underestimates the ultimate axial strain of concrete-filled fiber-reinforced polymer tubes with ±45° fiber angles.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3