Experimental study on strengthening steel-truss bridge diagonal members using carbon-fibre-reinforced polymer bonding methods

Author:

Pham Ngoc Vinh1ORCID,Ohgaki Kazuo2,Miyashita Takeshi3,Pham Ngoc Quang4

Affiliation:

1. Faculty of Civil Engineering, The University of Danang-University of Science and Technology, Danang, Vietnam

2. Department of Building Technologists, Institute of Technologists, Saitama, Japan

3. Department of Environmental and Civil Engineering, Nagaoka University of Technology, Niigata, Japan

4. Faculty of Transportation Mechanical Engineering, The University of Danang-University of Science and Technology, Danang, Vietnam

Abstract

This study investigated the effectiveness of carbon fibre-reinforced polymer (CFRP) materials in strengthening the diagonal tension members of steel-truss bridges. Monotonic tensile and cyclic loading tests were performed on CFRP-strengthened specimens with variations in the CFRP-bonding range on the flanges. This study focused on the strengthening methods A and B, which were proposed to address insufficient CFRP anchoring near gusset plates by bonding CFRP sheets to both sides of the flanges of the diagonal tension members. The results of the monotonic tensile loading tests indicated a significant increase in tensile stiffness and substantial improvements in yield strength (27%) and ultimate load-bearing capacity (51%) when the strengthening methods A and B were employed. Delamination of the bonded CFRP sheets was effectively delayed, occurring only after the steel yielded, owing to the use of a ductile adhesive (polyurea putty). On the other hand, the cyclic loading tests demonstrated a significant enhancement in the load-bearing capacities (33% for tensile, 32% for compressive) of the strengthened specimens. Moreover, the energy dissipation capacities of the specimens strengthened by methods A and B exhibited linear increases, with 12% and 14% higher values respectively than those of the non-strengthened specimen. Although the stiffnesses (tensile and compressive) of the strengthened specimens decreased in each loading loop, the strengthening methods A and B maintained the stiffness values at approximately 35% higher than those of the non-strengthened specimen.

Funder

The University of Danang, University of Science and Technology

Publisher

SAGE Publications

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3