Probabilistic assessment of plan-asymmetric structures under the near-fault pulse-like events considering soil–structure interaction

Author:

Birzhandi Mohammad S1,Halabian Amir M2

Affiliation:

1. Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

2. Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

This study aims to evaluate the torsional effects and soil–structure interaction simultaneously under near-fault pulse-like earthquakes in a probabilistic framework. Incremental dynamic analysis and fragility curves are employed for this goal. An eight-story R/C dual lateral load-resistant building consisting of shear walls and moment resisting frames is used. The median incremental dynamic analysis curves reported the maximum capacity for the symmetric structure in each foundation conditions. In addition, the capacity of structure will be increased when more shear wave velocity is assumed. Therefore, from this view, neglecting the soil–structure interaction will not be in the safe side. Fragility curves (using intensity measure directly) show that for different cases (except for very low shear wave velocity), more value of eccentricity leads to more probability of collapse. Moreover, the fragility curves show that (for each eccentricity), soil–structure interaction effect is significant only for the flexible base structure with the very low shear wave velocity (100 m/s) and more eccentricity value leads to less soil–structure interaction effects. Results show that the significant eccentricity value may lead to reduce the soil–structure interaction effect in the shear-wall structures under the near-fault events.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3