Development of ultra-low cycle fatigue life prediction model for structural steel considering the effects of surface roughness, loading frequency, and loading amplitude

Author:

Saleem Aleena1ORCID,Tamura Hiroshi1,Katsuchi Hiroshi1

Affiliation:

1. Department of Civil Engineering, Yokohama National University, Yokohama, Japan

Abstract

Abrasive blast cleaning is often done for steel structures before applying various protective coatings, which produces rough surfaces with changes in fatigue properties. This problem has been addressed in the low- and high-cycle fatigue regimes; however, the effect of surface roughness in combination with different loading parameters on the ultra-low cycle fatigue (ULCF) life has not been reported thus far. To this aim, a total of 59 ULCF tests on designed specimens of SM400 steel with five levels of surface roughness were performed under various loading frequencies and displacement amplitudes. The analysis of experimental results indicates a substantial reduction in fatigue life with an increase in the surface roughness and loading amplitude and a decrease in the loading frequency. Additionally, the strength degradation, dissipation energy, and load–displacement curves are discussed in detail. With the use of experimental data, a new life prediction model characterizing the combined effects of surface roughness, loading frequency, and loading amplitude on the ULCF life is proposed. Moreover, the proposed model is validated by predicting the fatigue life under variable and constant loading amplitude patterns. Comparison between experimental and theoretical results shows that the proposed model accurately estimates the ULCF life within an error band of ±15%, with a reasonable selection of model parameters.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3