Experimental and numerical studies on a test method for damage diagnosis of stay cables

Author:

An Yonghui12,Zhong Yue2,Tan Yanbin2,Ou Jinping2

Affiliation:

1. State Key Laboratory of Coastal and Offshore Engineering and State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian, China

2. Department of Civil Engineering, Dalian University of Technology, Dalian, China

Abstract

To diagnose the state of stay cables, a vibration-based model-free damage diagnosis method of stay cables using the changes in natural frequencies is further proposed and validated. The structural frequency is rapidly and easily acquired; moreover, it is simple and reliable for damage diagnosis. The frequency would change after the stay cable is damaged, so the frequency change could be used as the damage index. However, the stay cables are very long in long-span cable-stayed bridges, and their frequencies are very small; the frequency change due to small damage of the stay cable would be submerged by the surrounding noise and error of parameter identification process. A temporary diagonal steel bar–based method is used to solve this issue. The steel bar is installed with one end on the stay cable close to the bottom anchor head and the other end on the bridge deck; thus, the stay cable is divided into a short part and a long part by the steel bar. The frequency of a stay cable with a given tension force increases with the decrease in its length; according to the qualitative analysis, the frequency of the short part increases dramatically, and the local frequency change of the short part due to the same damage in the whole stay cable is amplified dramatically; thus, the small damage of a stay cable can be diagnosed easily. Numerical simulations of a stay cable selected from a cable-stayed bridge and a laboratorial stay cable are used to validate the method and also give a recommended rule for design of the temporary diagonal steel bar; experimental validation has also been conducted. All the results indicate that the proposed method works very well in damage diagnosis of stay cables. The proposed method is an output-only, model-free, fast and economical damage diagnosis method for stay cables.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3