Shell buckling, without ‘imperfections’

Author:

Calladine Christopher R1

Affiliation:

1. University of Cambridge, Cambridge, UK

Abstract

The buckling behaviour of thin shell structures under load has been a persistent challenge to engineering designers and researchers over many decades. In this article I consider two unusual experimental studies on the buckling of thin-walled elastic cylindrical shells, each of which sheds intriguing light on the buckling phenomena. The classical theory of buckling of thin cylindrical shells under axial compression predicts that the buckling stress will be proportional to t/ R– the ratio of thickness to radius – other things being equal. But collected results of experimental studies from many laboratories, when plotted on log–log scales, show clearly that the buckling stress is actually proportional to ( t/ R)1.5, with the measured buckling stresses being scattered through a factor of about 4 for shells with R/ t > 200. Such scatter is commonly judged to be in accord with Koiter’s theory of ‘imperfection sensitivity’. But that theory lays no claim to an understanding of the empirical 1.5-power law. I claim that a key to this situation is the experimental performance of some small-scale open-topped silicone rubber shells, buckling under their own weight, which clearly demonstrates a 1.5-power law, but with very little scatter. The buckling mode of these shells involves almost entirely inextensional deformation, with a single small dimple growing near the base, separated from the rest of the shell by a narrow boundary layer that accounts for almost all of the dimple’s elastic strain energy. A straightforward, simple analysis of the mechanics of the dimple is consistent with the experimental 1.5-power law. As noted above, experimental buckling loads of shells that are closed at both ends also show the empirical 1.5-power law, but now with significant statistical scatter. A second aim of the paper is to throw light on that phenomenon. I venture to attribute it to the effect of the boundary conditions of the shell. I adduce support for this view from experimental observations on the buckling of a shell with special, frictional end-fittings. That feature produces significantly higher collapse loads, and with much smaller scatter, than for corresponding shells with fixed boundaries; and it permits striking pre-buckled deformations to occur, of a kind not previously noted. It will be appreciated that neither of the two parts of this article depends on the widely accepted theory of imperfection-sensitivity; hence my choice of title. It is a pleasure for me to submit this article to a special publication in honour of Michael Rotter, with whom I have discussed matters of this sort through three decades.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Buckling of Stiffened Heterogeneous Shells Taking into Account Material Creep;International Journal of Computational Methods;2023-11-18

2. Critical circumferential wavelength of elastic buckling of longitudinal compressed thin-walled cylindrical shells;Scientific Reports;2023-10-04

3. Lifting, Loading, and Buckling in Conical Shells;Physical Review Letters;2023-10-03

4. Buckling-resistant topological design using sensitivities to variations in localised nominal stiffness;Thin-Walled Structures;2021-10

5. Buckling of cylindrical shell panels in ANSYS;MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2020): Proceeding of the 14th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3